Autonomous Particles Groups for Particle Swarm Optimization
نویسندگان
چکیده
In this paper a modified Particle Swarm Optimization (PSO) algorithm called Autonomous Groups Particles Swarm Optimization (AGPSO) is proposed to further alleviate the two problems of trapping in local minima and slow convergence rate in solving high dimensional problems. The main idea of AGPSO algorithm is inspired by individuals’ diversity in bird flocking or insect swarming. In natural colonies, individuals are not basically quite similar in terms of intelligence and ability, but they all do their duties as members of a colony. Each individual’s ability can be useful in a particular situation. In this paper a mathematical model of diverse particles groups called autonomous groups is proposed. In other words different functions with diverse slopes, curvatures, and interception points are employed to tune the social and cognitive parameters of the PSO algorithm to give particles different behaviors as in natural colonies. The results show that PSO with autonomous groups of particles outperforms the conventional and some recent modifications of PSO in terms of escaping local minima and convergence speed. The results also indicate that dividing particles in groups and allowing them to have different individual and social thinking can improve the performance of PSO significantly.
منابع مشابه
Providing a Bird Swarm Algorithm based on Classical Conditioning Learning Behavior and Comparing this Algorithm with sinDE, JOA, NPSO and D-PSO-C Based on Using in Nanoscience
There can be no doubt that nanotechnology will play a major role in our futuretechnology. Computer science offers more opportunities for quantum andnanotechnology systems. Soft Computing techniques such as swarm intelligence, canenable systems with desirable emergent properties. Optimization is an important anddecisive activity in structural designing. The inexpensive re...
متن کاملA New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement
In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the combination of the conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...
متن کاملComparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کاملPSO for multi-objective problems: Criteria for leader selection and uniformity distribution
This paper proposes a method to solve multi-objective problems using improved Particle Swarm Optimization. We propose leader particles which guide other particles inside the problem domain. Two techniques are suggested for selection and deletion of such particles to improve the optimal solutions. The first one is based on the mean of the m optimal particles and the second one is based on appoin...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015